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Slow nonlinear oscillations in a circular well
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The period T of the Helmholtz mode in a circular well that is bounded above by a
free surface and below by a semi-infinite reservoir is determined in terms of elliptic
integrals. It is shown that T decreases monotonically with increasing amplitude A

and is within 1% (10%) of the linear limit T0 for A/h0 < 0.4(1.0), where h0 is the
ambient depth.

1. Introduction
Informed by the work of Molin (2001), Miles (2002a, b), and Hirata & Craik (2003),

I consider here the Helmholtz mode (ω2 � g/a) in a circular well of radius a and
ambient depth h0 that is bounded above by a free surface and below by a semi-infinite
reservoir. This mode is source-like, and the mass flux in the well is balanced by an
asymptotic inflow in the reservoir.

My primary aim is the determination of the period T of free oscillations of
amplitude A for 0<A<h0. After constructing the velocity potentials in the well and
the reservoir in § § 2 and 3, respectively, I invoke conservation of energy in § 4 to obtain
h(t) and T in terms of elliptic integrals and show that T decreases monotonically
with increasing A and is within 1% (10)% of the linear limit T0 for A/h0 < 0.4(1.0).

2. Fluid motion in the well
The fluid in the well is bounded by r = a and 0 <z <h(t), where r and z are

cylindrical coordinates, and h is the elevation of the free surface above the mouth
(z = 0). Neglecting the lateral variation of the motion (which therefore is rigid-body
like), we obtain the velocity potential

φ = φ0 + ḣz (0 � z � h), (2.1)

where φ0 is the potential at z = 0+, and ḣ ≡ dh/dt . Anticipating

φ0 = αaḣ, α ≡ 8

3π
, (2.2a, b)

which follows from the matching of (2.1) with the solution in the reservoir (see § 3),
we obtain

φ = ḣ(z + αa) (0 < z � h). (2.3)

The perturbation pressure p, which is linear in z and must vanish at the free
surface, is given by

p = ρ(g + ḧ)(h − z) (0 � z � h). (2.4)
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3. Fluid motion in the reservoir
The velocity potential in the reservoir is determined by

∇2φ = 0 (−∞ < z < 0), (3.1)

φz =

{
ḣ

0
(r � a, z = 0−), (3.2a)

and

φ → 0 (R ≡ (r2 + z2)1/2 → ∞, z < 0). (3.2b)

Invoking the Green’s function

G(r, ρ) =
1

2π|r − ρ| , (3.3)

we obtain (cf. Rayleigh 1896, § 302)†

φ(r) =
1

2π

∫ ∫
n · ∇φ(ρ) dS(ρ)

|r − ρ| =
ḣ

2π

∫ ∫
dS(ρ)

|r − ρ| ≡ ḣΦ(r), (3.4)

where r specifies the point of observation, ρ specifies a point on the boundary of the
fluid, n is the outwardly directed normal, and the integral is over the boundary. The
volumetric flux πa2ḣ through the mouth is balanced by the radial inflow −2πR2φR ,
which may be calculated from the asymptotic approximation

φ ∼ ḣ

2π

[
πa2

R

]
= 1

2
ḣ

[
a2

R

]
(R → ∞, z < 0). (3.5)

This inflow may be associated with some outer motion, as in Molin’s (2001) treatment
of a rectangular moonpool.

The neglect of the radial variation of the motion in the well prevents an exact
matching with the motion in the reservoir, but closure may be effected within the
present approximation by matching the total impulse (cf. Lamb 1932, § 196) or,
equivalently, the average of φ, in the mouth:

〈φ〉 =

{
φ0

〈Φ(r)〉ḣ (0 < r < a, z = 0±) , (3.6)

where 〈 〉 signifies an average over the mouth. Invoking

〈Φ(r)〉 = αa, α ≡ 8

3π
(3.7)

(Rayleigh 1896, § § 302, 312), we obtain (2.2).
The pressure in the reservoir is determined by the Bernoulli equation

p

ρ
≡ gh0 −

[
φt + 1

2
(∇φ)2 + gz

]
(3.8a)

= g(h0 − z) − ḧΦ − 1
2
ḣ2(∇Φ)2. (3.8b)

4. Energy integrals
The energies of the fluid motion in the well and the reservoir are given by

Ew = 1
2
m[g(h − h0)

2 + hḣ2], (4.1)

† Rayleigh considers low-frequency acoustical radiation from a flanged, open pipe, which is
analogous to the present problem.
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and

Er = 1
2
ρ

∫ ∫
S

φ(n · ∇φ) dS = 1
2
mα aḣ2, (4.2)

where

m ≡ πa2ρ. (4.3)

Requiring the total energy to be conserved, we obtain

Ew + Er = 1
2
m[g(h − h0)

2 + (h + αa)ḣ2] (4.4a)

= 1
2
mgA2, (4.4b)

where A is the amplitude of the oscillation of the free surface about z =h0.
Solving (4.4) for

dt

dh
= ±g−1/2

[
h + αa

A2 − (h − h0)2

]1/2

, (0 < h0 − A < h < h0 + A), (4.5)

integrating, choosing t =0 at h = h0, and letting

h = h0 + A sin θ
(
− 1

2
π < θ < 1

2
π
)
, (4.6)

we obtain the elliptic integral (Byrd & Friedman 1954, 288.01)

t = g−1/2

∫ θ

0

(h1 + A sin ψ)1/2 dψ, (4.7)

where

h1 ≡ h0 + αa. (4.8)

The period is given by

T = 2g−1/2

∫ π/2

−π/2

(h1 + A sin ψ)1/2 dψ (4.9a)

= 4

[
h1 + A

g

]1/2

E(k), k =

[
2A

h1 + A

]1/2

, (4.9b, c)

where E is a complete elliptic integral of the second kind and modulus k. Introducing

T0 = 2π(h1/g)1/2, (4.10)

we find that T/T0 decreases monotonically from 1 for A/h1 → 0 through 0.983 for
A/h1 = 1/2 to 2

√
2/π = 0.900 for A/h1 ↑ 1 (although A < h0 <h1 for the physical

problem).

I am indebted to Alex Craik for perspicacious questions. This work was supported
in part by the Office of Naval Research Grants N00014-92-J-1171 and N00014-03-1-
0342.
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